Synthesis of Asymmetric Propanetriol Analogues

Yong En GUO, Jia Hua CHEN*, Bin FU, Neng Dong WANG, Sheng JIN, Liu Min CHEN, Feng ZOU, Xiu ZHANG, Yan Dong ZHANG, Ze Jin YOU

The Key Lab of Bioorganic Chemistry & Molecular Engineering, Ministry of Education; Department of Chemical Biology, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871

Abstract: From natural tartaric acid, (R)-2-benzyloxy-3-(2-tetrahydropyranyloxy) propanol **3** was designed and synthesized, and (R)-2-benzyloxy-3-(4-methoxybenzyloxy) propanol **7** was prepared in a new method. They can be used as chiral synthons of lysophosphatidic acid and other compounds with asymmetric propanetriol backbone.

Keywords: Chiral synthons, asymmetric propanetriol, synthesis.

The lysophosphatidic acid (LPA, 1-acyl-*sn*-glycerol-3-phosphate) level in plasma was directly associated with the ovarian cancer, patients suffering from which have significantly higher LPA level in plasma^{1,2}. To develop a simple and sensitive immunological method of detecting LPA level (~ μ mol/L) is of significance in diagnosing ovarian cancer at early stage, and we tried to synthesize 1- (ω -amino) long-chained LPA and link it with protein to produce complete antigens. Two chiral synthons for this target compound, (R)-2-benzyloxy-3-(4-methoxybenzyloxy) propanol **7** and (R)-2-benzyloxy-3-(2-tetrahydropyranyloxy) propanol **3**, were designed and prepared *via* two routes respectively, as shown in **Scheme I** and **II**.

Scheme I

So far there is no report about the synthesis of compound **3**. (S)-2-Benzyloxy-3-(2-tetrahydropyranyloxy) propanol was prepared from glycerol and followed enzymatic differentiation of the enantiotopic hydroxymethyl groups³. Compound **7** was synthesized from dibenzylated D-mannitol⁴.

After 2S, 3S -3-benzyloxy-1, 2, 4-butanetriol (prepared from natural L-tartaric

^{*}E-mail:jhchen@chem.pku.edu

Scheme II

Reagents and conditions: a). NaIO₄/MeOH, rt.1.5 h. b). Br₂/MeOH, rt. 2 h; a, b overall yield 50%. c). DHP/PTSA/CH₂Cl₂, rt.3 h, 70%. d). LiAlH₄/THF, reflux 3.5 h, 78%. e). PMBCl/NaH/THF, reflux 11 h. f). 2 mol/L HCl/THF, rt. 6 h; e, f overall yield 60%. g). NaBH₄/MeOH, rt. 2 h; a, g overall yield 50%.

acid⁵) was successively oxidized by sodium periodate and bromine⁶, the formed hydroxy ester **1**, which was protected by 3,4-dihydro-2*H*-pyran first, was reduced with lithium aluminiumhydride to produce compound **3** (Scheme I).

The adjacent two hydroxy groups of 2S, 3S-3-benzyloxy-1, 2, 4-butanetriol were protected by acetone⁷ and the 4-hydroxy group was protected by 4-methoxybenzyloxy group to get compound **4**, which was hydrolyzed in acidic solution. Thus prepared butanediol **5** was oxidized by sodium periodate to obtain **6**, then **6** was reduced by sodium borohydride to get compound **7** (Scheme II).

Compounds 2, 3, 4, 5, 6 are all unreported (compounds 4 and 6 were not separated). The successful synthesis of compound 3 and 7 played an important role in our total synthesis of 1-(ω -amino long-chained acyl)-*sn*-glycerol-3-phosphate (ω -amino LPA).

Above all, two analogues of asymmetric propanetriol were prepared. Five compounds, **1**, **2**, **3**, **5** and **7**, as showed in **Scheme I** and **II**, were characterized by IR, ¹H NMR, ¹³C NMR, MS and HRMS.

The spectral data of chiral synthons 3 and 7 were shown in Table 1.

	3	7
$[\alpha]^{20}_{D}$	+3.5 (c 1.12, CH ₃ OH)	+19.3 (c 1.05, $CHCl_3$)
IR (film, ν ,cm ⁻¹)	3442.4,2923.4,1595.6,1408.9,1045.3	3438.9,2869.5,1610.9,1511.1,1457.6, 1248.3,1039.4,823.5,744.8
¹ H NMR (200 MHz,CDCl ₃ , TMS, δ ppm)	7.35~7.37(m,5H,Ar <u>H</u>);4.60~4.80(m,3H, PhC <u>H</u> ₂ ,THPO);3.50~3.90(m,7H,C <u>H</u> , C <u>H</u> ₂ OH,C <u>H</u> ₂ OTHP,THPO);1.54~1.80 (m,7H,O <u>H</u> ,THPO)	6.82~7.33(m,9H,Ar <u>H</u>);4.47~4.74 (m,4H, <i>p</i> -MeOPhOC <u>H</u> ₂ ,PhC <u>H</u> ₂) ;3.59~3.80(m,8H, OC <u>H</u> ₃ ,C <u>H</u> , C <u>H</u> ₂ OH,C <u>H</u> ₂ OPMB);2.30(br s,1H,O <u>H</u>)
¹³ C NMR (50 MHz,CDCl ₃ , TMS, δ ppm) EIMS (m/z)	138.21, 128.36, 127.74, 127.71, 99.21, 99.04, 71.89, 67.09, 62.64, 30.45, 25.25, 19.42 267(M+1), 235, 181, 134, 107	158.75,138.00,129.68,128.89,127.95, 127.37,127.24,113.34,72.59,71.55,69.30, 62.01, 54.71,54.70 302(M,7%),211(28),181(24),137(43),121 (100),91(86)
HRMS (m/z)	(C ₁₅ H ₂₃ O ₄ ,M+1):calcd 267.1596, found 267.1588.	$(C_{18}H_{22}O_4, M)$: calcd 302.1518, found 302.1523

Table 1The spectral data of compounds 3 and 7

Aknowledgment

This research work was supported by a grant (No. 29872003) from the National Natural Science Foundation of China (NNSFC).

References

- Y. Xu, et al. Clin. Cancer Res., 1995, 11102, 223.
 Y. Xu, et al. J.Am.Med.Assoc., 1998, 280, 739.
- 3. B. Detlev, et al. J. Chem. Soc., Chem. Commun., 1986, 1523.
- 4. K. Fukase, et al. Bull. Chem. Soc. Jpn, 1992, 65, 2644.
- 5. K. Fujita, et al. Tetra. Lett., 1982, 23, 3507.
- X.X. Xu, et al. Acta Chimica Sinica, 1995, 1290. 6
- 7. S. Valverde, et al. Tetra. Lett., 1985, 26, 3732.

Received 28 December, 2001